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Abstract.
Background: Neuroimaging techniques combined with computational neuroanatomy have been playing a role in the investi-
gation of healthy aging and Alzheimer’s disease (AD). The definition of normative rules for brain features is a crucial step to
establish typical and atypical aging trajectories.
Objective: To introduce an unsupervised pattern recognition method; to define multivariate normative rules of neuroanatomical
measures; and to propose a brain abnormality index.
Methods: This study was based on a machine learning approach (one class classification or novelty detection) to neuroanatom-
ical measures (brain regions, volume, and cortical thickness) extracted from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI)’s database. We applied a ν-One-Class Support Vector Machine (ν-OC-SVM) trained with data from healthy subjects to
build an abnormality index, which was compared with subjects diagnosed with mild cognitive impairment and AD.
Results: The method was able to classify AD subjects as outliers with an accuracy of 84.3% at a false alarm rate of 32.5%. The
proposed brain abnormality index was found to be significantly associated with group diagnosis, clinical data, biomarkers, and
future conversion to AD.
Conclusion: These results suggest that one-class classification may be a promising approach to help in the detection of disease
conditions. Our findings support a framework considering the continuum of brain abnormalities from healthy aging to AD,
which is correlated with cognitive impairment and biomarkers measurements.
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INTRODUCTION

Due to its low invasiveness and high discrimination
power between tissues, magnetic resonance imag-
ing (MRI) has been considered a powerful tool for
the investigation of disorders in the central nervous
system. Structural imaging experienced a consider-
able advance in the last years with deep gray matter
volumetry [1–3], cortical surface modelling [4], and
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voxel-based morphometric analysis of T1 images
[5].

The utilization of machine learning techniques in
neuroimaging data analysis has increased substantially
in the last decade. These techniques are suitable both
to extract patterns from a multivariate perspective and
to classify subgroups by obtaining prediction labels for
new observations. One of the most popular methods is
support vector machine (SVM) [6–8]. However, a great
amount of studies still focus on classification prob-
lems with two classes, usually discriminating patients
under a very specific condition from healthy subjects.
A promising alternative is the construction of nor-
mative rules aimed at defining characteristic patterns
of a given population (e.g., healthy subjects) rather
than seeking a discriminating pattern. Thus, assuming
we have a large sample of healthy (typical) subjects,
novelty detection methods have the potential to iden-
tify individuals with abnormal brains as outliers. The
search for characteristic patterns might be portrayed
as an issue of data description in the machine learning
literature [9–11].

Normative databases of neuroimaging data are
becoming a promising approach for the evaluation
of neuroanatomical features [12, 13]. However, there
are few studies employing non-supervised classi-
fiers to neuroimaging data. One-Class Support Vector
Machine (OC-SVM) is a non-supervised variant of
SVM classifiers which focus on the detection of
outliers. Hardoon and Manevitz [14] applied these
techniques to non-clinical functional MRI data to iden-
tify the execution of a motor task based on brain activity
patterns. Similarly, Sato et al. [15], on a proof of
concept study, have built a normative database of func-
tional connectivity patterns by also using an OC-SVM
in a laterality experiment. Song and Wyrwicz [16] have
used an OC-SVM classifier to detect active voxels. The
basic idea of OC-SVM is that abnormality may occur
in very different ways. Therefore, the main concern is
to identify deviant patterns from typical ones (used to
train the machine).

Regarding clinical applications, there was a recent
re-analysis using OC-SVM on data from a study
which had previously used a two-class SVM [17]
to classify healthy controls and patients with unipo-
lar depression. In this study, subjects were exposed
to faces with emotional expression and classification
was based on the standard global brain activation in
response to these stimuli. However, since the sam-
ple was small, even combining unipolar depression
patients who responded to treatment to those that did
not, data was insufficient to train a two-class SVM.

As a result, the study did not obtain significant pre-
dictions about the response to treatment. By using
OC-SVM [18], the authors found a significant cor-
relation between the scores obtained from OC-SVM
and patients’ scores in the Hamilton Rating Scale for
Depression. In addition, they were also able to iden-
tify two subgroups associated with the future response
to treatment. A study by Sato et al. [15] on attention
deficit and hyperactivity disorder is another example
of OC-SVM usefulness in neuroimaging data analy-
sis. The authors applied OC-SVM to the functional
connectivity between precuneus/(posterior cingulate)
and dorsal anterior cingulate cortex and abnormal con-
nectivity patterns were found for attention deficit and
hyperactivity disorder. A more recent study [19] fore-
saw the application of OC-SVM for the definition of
normative rules as a promising method, considering
large-scale multicentric neuroimaging datasets.

With the trend of increasing life expectancy, we face
a growing impact of neurodegenerative diseases such
as Alzheimer’s disease (AD) [20]. AD is a neurode-
generative disorder of progressive nature that impairs
neuronal function leading to gradual degradation in
functional, cognitive and behavioral aspects ultimately
rendering subjects into total dependency for even the
most basic activities of daily living. Although con-
troversial, the most accepted etiological hypothesis
is the so-called “Amyloid Cascade Hypothesis” [21,
22], which considers amyloid-� deposits found during
histopathological examination of the affected brains to
be the disease’s main cause; however, there are alterna-
tive hypotheses, e.g., age-dependent hypothesis which
considers neuroinflammation and altered state of brain
cells as consequences of an initial injury [23]. Consid-
erable advances have been made in the understanding
of the underlying neural basis of AD. However, as
a definitive biomarker is not available yet, the clini-
cal diagnosis of this disease can be only probabilistic,
even in the case of typical AD [24]. According to cur-
rently accepted consensus recommendations, in order
to fulfill the criteria for probable AD, an individual
must present clinically with an early and significant
episodic memory impairment and at least one sup-
portive biomarker criteria. These biomarkers might be
structural brain changes visible on MRI with early and
extensive involvement of the medial temporal lobe,
molecular neuroimaging changes seen with positron
emission tomography (PET) with hypometabolism or
hypoperfusion in temporoparietal areas, and changes in
cerebrospinal fluid biomarkers [24]. Research of other
biomarkers is still needed to contribute for the diagno-
sis of the disease at the earliest possible phase so that
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available therapeutic approaches can be more effective
[24].

In this study, we applied OC-SVM to the public
MRI data from the project Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) [25]. This initiative has
acquired images from subjects with AD, subjects with
mild cognitive impairment (MCI), and healthy control
subjects. The utilization of supervised machine learn-
ing methods has shown a promising potential to explore
the ADNI database. Stonnington et al. [26] applied
relevance vector regression to predict individual clin-
ical scores based on morphological features extracted
from structural MRI. Further studies have investigated
the potential of machine learning methods to explore
MCI progression and possible conversion to the AD
to AD [27–29]. In a more technical study, Chu et al.
[30] have tested automated feature selection methods
(t-test filtering and recursive feature elimination) in
group classification and have not found a significant
improvement in accuracy. Recently, Casanova et al.
[31] proposed a risk score for AD by using regularized
logistic regression.

Previous methods proposed in the literature focused
on the discrimination between patients with AD and
healthy controls and the prediction of progression
to AD. From a multivariate perspective, there is no
description of a typical pattern or normative rules to
MRI data. In the present study, using an automated
method and OC-SVM we extracted morphometric fea-
tures (cortical thickness and volumetric information)
from the images to define normative rules based on
healthy subjects. As a byproduct of this approach, an
abnormality scale was obtained, providing quantitative
indication that a prospective patient can be consid-
ered atypical based on his/her age and neuroanatomical
measures. Finally, we illustrate how this brain abnor-
mality score is associated to clinical data, biomarkers,
and also prognosis.

MATERIAL AND METHODS

Image database

Data used in the preparation of this article
were obtained from the ADNI database (http://adni.
loni.usc.edu). The ADNI was launched in 2003 by
the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit orga-
nizations, as a $60 million, 5-year public private
partnership. The primary goal of ADNI has been to

test whether serial MRI, PET, other biological mark-
ers, and clinical and neuropsychological assessments
can be combined to measure the progression to MCI
and to early AD. The Principal Investigator of this ini-
tiative is Michael W. Weiner, MD, VA Medical Center
and University of California–San Francisco. ADNI is
the result of efforts of many co-investigators from a
broad range of academic institutions and private cor-
porations, and subjects have been recruited from over
50 sites across the U.S. and Canada. For up-to-date
information, see ADNI’s Progress Report and Future
Plans [32] and http://www.adni-info.org.

In the current study, we considered the structural
MRI from 814 subjects who participated in ADNI’s
first phase (ADNI-1, without processing errors in
freesurfer recon-all pipeline, more information about
the protocol and ethical issues can be found at
http://adni-info.org/). The demographic information of
this sample is described in Table 1. Clinical data (Mini-
Mental State Examination, MMSE [33]; and Clinical
Dementia Rating, CDR [34], global and sum of boxes),
genotypic information (ApoE) and biomarkers (tau
protein and amyloid-�, lumbar puncture, see Shaw et
al. [35]) were also used in the analyses. Finally, we
also considered information about the conversion from
MCI to AD (at the last assessment of the subject, in a
maximum period of 36 months) in further analyses.

Table 1
Demographic information of the sample used in this study

Gender Diagnosis Age Frequency Relative frequency

Male C <60 0 0%
60–70 5 4.20%
71–80 87 73.11%
>80 27 22.69%

MCI <60 7 2.75%
60–70 42 16.47%
71–80 128 50.19%
>80 78 30.59%

AD <60 1 1.00%
60–70 22 22.00%
71–80 41 41.00%
>80 36 36.00%

Female C <60 0 0%
60–70 1 0.92%
71–80 85 77.98%
>80 23 21.10%

MCI <60 4 2.86%
60–70 35 25.00%
71–80 61 43.57%
>80 40 28.57%

AD <60 5 5.49%
60–70 11 12.09%
71–80 49 53.85%
>80 26 28.57%

C, healthy controls; MCI, mild cognitive impairment; AD,
Alzheimer’s disease.

http://adni.loni.usc.edu
http://www.adni-info.org
http://adni-info.org/
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Imaging processing

Neuroanatomical measures of the subjects were
obtained from their structural MRI files by using
the standard recon-all pipeline of FreeSurfer soft-
ware version 4.5.0 (freely available at http://surfer.
nmr.mgh.harvard.edu/fswiki/). The output of this pro-
cessing includes neuroanatomical measures from brain
regions based on an automated segmentation and
parcellation procedures. Further information about
recon-all pipeline can be found in referred literature
[4, 36–38]. In this study, we considered measures of
average thickness of cortical structures and volumetric
information of cerebellar and subcortical structures.
These two measures were considered because they
are the most intuitive/interpretable ones that could be
extracted from parcellated brain regions. Note that in
the case of subcortical structures, cortical thickness
cannot be estimated and thus the volume was extracted.
Other possible anatomical measures are curvature,
Jacobian or gyrification, which are more complex fea-
tures with difficult interpretation of findings.

One-class SVM

OC-SVM is an unsupervised learning method orig-
inally proposed by Schölkopf [39]. This method
determines a boundary for identifying the subjects of
a target population, once the variables of interest and
a large sample of “examples” subjects are available.
After training, observations (subjects) unseen by the
classifier are then automatically labeled as either typ-
ical or atypical (outliers). Given a training data set
consisting of N observations (e.g., MRI brain images)
of dimension d (the number of input variables), i.e.,
D = {x1..xN} ⊂ Rd , the goal is to find the most
compact region containing most of the observations
belonging to the typical class.

ν-OC-SVM based on a Radial Basis Function (RBF)
as kernel is one of the most used methods. This function
is given by k(�u, �v) = exp(−γ(�u, �v)2), where gamma
is a constant and �u and �v are vectors. The basic idea
is to project the data (neuroanatomical features) onto
a hypersphere and then determine the hyperplane fur-
thest from the origin enclosing most of the data (see
Fig. 1). In other words, a mapping function � receives
the characteristics (in this case, the anatomical brain
measures such as cortical thickness) of an observation
(subject) at the input space (the space of brain anatom-
ical measurements), projecting this observation onto a
hypersphere (a sphere defined in a space greater than 3
dimensions; in this case, we have several dimensions

Fig. 1. ν-OC-SVM abnormality score and its relation with the deci-
sion function. The white dots represent points not recognized as
typical ones (outliers) f (x) are negative for outliers. ρ: distance
between the hyperplane and the origin of the hyperplane that sepa-
rates most of the data from the origin.

because we are considering the anatomical informa-
tion of more than 3 brain regions) in a space called
feature space. The idea of transforming the data from
the input space to the feature space is to facilitate the
discrimination of the data that cannot be easily classi-
fied in the input space, but this might be accomplished
at the feature space. After the data is projected on the
hypersphere (see Fig. 1), the problem is to define what
can be considered at typical observation. In the v-OC-
SVM, the method tries to find a hyperplane in which
the proportion of (1–v) of the projected observations
are above this hyperplane. A hyperplane is the exten-
sion of the concept of a plane for spaces greater than 3
dimensions, described by an intercept and a linear com-
bination (hyperplane coefficients) of its coordinates.
When doing the mathematical calculations, one may
notice the so called “kernel trick”, in which the function
� does not need to be specified, but only an approxi-
mation of its dot product (a property of functions), the
so called kernel function. The main advantage of using
kernel functions is that, under some conditions (Mer-
cer conditions), the same kernel can approximate the
dot products of several distinct � functions, allowing
generalizability.

As described previously, the v-OC-SVM method
requires the pre-specification of parameter ν, which
determines what fraction of the typical data (type
I Error) will be classified as atypical [40]. Further

http://surfer.nmr.mgh.harvard.edu/fswiki/
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details about this method can be found in the referred
literature.

In this work, we applied the dual formulation
of ν-OC-SVM obtained by the method of Lagrange
multipliers (a well-established approach in numerical
optimization theory, which aims to minimize/ maxi-
mize an objective function subject to some constraints,
further details can be found in [39]). By using this
mathematical framework, the problem of separating
the origin from the data (described previously) is equiv-
alent to minimize an objective function given by:

min
a

∑

i j

αiαjk(xi, xj),

where �i ’s are coefficients, k is the kernel function
(e.g., radial basis function) and xi are the feature values
of each individual (e.g., brain anatomical features of
the subject j). This minimization is constrained to the
following conditions:

0 ≤ αi ≤ 1

vN

∑

i

αi = 1.

Then, the separating hyperplane coefficients w and
the distance of this hyperplane from the origin ρ can
be calculated by using the formulas:

w =
∑

i

αi�(xi),

ρ =
∑

i

αjk(xi, xj); where i is such that αi > 0,

Where � is the mapping function from the input
space to the feature space. The numerical implemen-
tation of the solution of this problem is technically
complex and it is out of the scope of this study. Further
details about these procedures are described in [39]).

In addition, given w (separating hyperplane coeffi-
cients) and ρ (distance from the origin) as above, it can
be shown that the decision function

f (x) = (w · � (x)) − ρ

is positive for most of the examples in the training
data set (typical). When negative, its value represents
an outlier (atypical observation) as shown in Fig. 2.
In other words, the role of the decision function is to
attribute a value for each new observation (set of brain
anatomical characteristics of a novel subject). The sign
of this value defines the predicted label for this obser-
vation (typical or atypical, given a normative data used
to train OC-SVM). In this study, a positive value of the
decision suggests that the subject belongs to the typical

healthy aging group. Conversely, negative values indi-
cate possible deviations from this “normal” pattern,
such as mild cognitive impairment or AD.

Data analysis

We applied OC-SVM to the neuroanatomical fea-
tures (volumes of the cerebellum and subcortical
structures and cortical thicknesses) extracted by
FreeSurfer (115 features, Desikan Atlas [41], see Sup-
plementary Material). Gender and age effects were
previously removed from the data by considering the
residuals of multiple regression using these two vari-
ables as regressors. For each brain region and the
whole sample, a linear model was fitted considering the
anatomical measurement of this region as a response
variable and gender and age as predictor variables. The
residual, i.e., the difference between actual and pre-
dicted anatomical measurement was used for further
analysis. This procedure was carried out in order to
reduce possible effects of age and gender in OC-SVM
analysis. Although the site of acquisition (or scanner)
could also be included as covariate, we prefer not to
use this variable in order to keep the generalizability of
the method. Otherwise, the application of the proposed
method to the data of an unseen site would require an
“in-site” large database for normalization purposes.

We then trained OC-SVM considering half of the
healthy sample (training data) and then tested in the
other half and also the MCI and AD sample (test data).
This analysis was carried out by using the software
GNU R Project [42] version 2.15.3 and the pack-
age e1071 [43] based on library LIBSVM [44]. In
the present study, since the sample is large, we split
the healthy controls (228 subjects) sample in training
and test set (114 subjects in each set), for validation.
Gamma parameter was then selected in order to keep
the false alarm rate of the test set as close as possi-
ble as ν, in order to avoid overfitting. It is important
to highlight that we used only half of the healthy sub-
jects in OC-SVM training. Thus, patients’ data were
never used to tune the parameters. We set ν values at
0.3 (so the expected rate of type I error is 30%) and
fixed the kernel gamma parameter at 0.001 (after tun-
ing). It is important to emphasize that the specification
of ν parameter is arbitrary. In this study, we set v at 0.3
because given our sample size it allows a reliable val-
idation of the predicted and observed false alarm rate
(which must be 30%). Since the test set is composed
of 114 control subjects, we expect 34.2 subjects to be
wrongly assigned as atypical. Ideally, ν should be as
close as possible to zero. However, if the false alarm
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Fig. 2. A) Box-plots of abnormality scores (negative values of the decision function) across diagnostic groups (in the test set). The greater is
the score the greater is the deviation from the typical brain pattern. Note that most subjects in AD group were pointed out as being abnormal.
As expected, most subjects in MCI group were between controls and AD group. B) Confidence Intervals for differences of abnormality scores
by diagnostic condition obtained through Tukey’s HSD post-hoc test. C, D) Scatter-plots between abnormality scores and MMSE/CDR sum-
of-boxes. E, F) Scatter-plot of abnormality scores and tau protein and amyloid-� concentration, respectively. The subjects depicted in red are
APOE4 genotype carriers. C, healthy controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease.
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rate was too small, we would have too few occurrences
for a validation whether the expected and observed
rates are close (e.g., if v = 0.05 the expected false alarm
rate would be only 5.7 subjects). However, since the
main feature of our proposal is the development of
an abnormality score and not a categorical labeling,
the score are not strongly affected by slight changes
gamma, because most changes will be only in the cut-
off of the decision value (for the categorization).

For a new subject, if the decision value f (x) is nega-
tive, it implies that the subject is considered an outlier.
If positive, the subject is considered typical. Thus, the
negative value of the decision function −f (x) might
be considered as a measure of brain abnormality [19].
The higher is this measure, the higher is the deviation
from the typical pattern. All statistical analyses were
based solely on the test data, i.e., controls from the
training set were excluded in order to avoid double
dipping. The accuracy in each group (controls, MCI
and AD) was calculated and the abnormality scores
were then compared using one-way ANOVA. Associ-
ations with clinical (CDR global and sum of boxes),
and biomarker data (tau protein and amyloid-� concen-
tration) were carried out using the one-way ANOVA
and Spearman’s correlation tests, respectively.

RESULTS

All results were based solely on the analysis of the
test sample, in order to avoid double dipping. The accu-
racy in each class (controls labeled by OC-SVM as
non-outliers and patients classified as outliers) is pre-
sented in Table 2. Note that the accuracy in the healthy
control group (specificity) is close to 70% as expected
(1 − ν, where ν was previously set to 0.3). Box-plots
describing the abnormality scores (negative values of
the decision function f(x)) are shown in Fig. 2. ANOVA
test indicates that the mean abnormality score is sig-
nificantly different between groups (AD, MCI, and
controls, p < 0.001). We applied Tukey’s HSD post-
hoc tests and all group pair wise differences were
statistically significant with p < 0.001. As expected, the
largest difference in the abnormality score was between
healthy controls and AD patients as depicted in Fig. 2.

Table 2
Accuracy (in the test set) of the classification at each group

Group Accuracy (%)

Healthy controls 67.5% (specificity)
Mild cognitive impairment (MCI) 54.4% (sensitivity for MCI)
Alzheimer’s disease (AD) 84.3% (sensitivity for AD)

In addition, significant differences (one-way
ANOVA, p < 0.001) were found in the mean abnor-
mality score across CDR-global groups (low, mid
and high). Complementary, we found a positive cor-
relation between the OC-SVM abnormality score
and the CDR-sum-of-boxes (Spearman’s rho = 0.463,
p < 0.001) and a negative correlation with MMSE
(Spearman’s rho = −0.378, p < 0.001). Significant
correlations were also found between the abnormality
score and both tau (Spearman’s rho = 0.110, p < 0.04)
and amyloid-� (Spearman’s rho = −0.154, p < 0.004)
concentration. Finally, the mean abnormality score
of MCI individuals with future conversion to AD
was greater than the mean of abnormality score of
the subjects without conversion (one-way ANOVA,
p < 0.001).

In summary, as expected, healthy controls were
labeled as the most typical, patients with AD pre-
sented the most abnormal brains, and MCI individuals
ranged mostly between these two extremes. Moreover,
the abnormality score was associated not only with
clinical data but also with biomarker measures. Lastly,
high levels of brain abnormality scores in MCI were
also associated with future conversion to AD.

DISCUSSION

A promising alternative use of SVM is the construc-
tion of normative rules, using one-class SVM variant
to characterize the typical set of neuroanatomical fea-
tures and its response over previously unseen data to
decide whether the subject’s neuroanatomical mea-
sures correspond to a typical example or to an outlier. A
potential application to the diagnosis of medical con-
ditions is to train a one-class classifier with data from
healthy subjects in order to have the outlier outcome of
the classifier as an indication of an adverse condition.
Although the classification accuracy could be higher
by using a two-class SVM instead of OC-SVM, a key
advantage of the proposed method is that the patho-
logical group is solely defined by a deviation from the
typical pattern. Thus, a priori selection or high weight-
ing of specific regions (crucial to discriminate specific
diseases) is not necessary. Moreover, our normative
rules were based solely on half of the healthy volun-
teers’ sample. Thus, conceptually, the same rules might
be used in the case of other diseases and not only AD.

To illustrate this approach, we chose the structural
MRI images from the database maintained by the
ADNI whose primary goal has been to test whether
serial MRI, PET, other biological markers and clinical



A
U

TH
O

R
 C

O
P

Y

208 A. Andrade de Oliveira et al. / Defining Multivariate Normative Rules for Healthy Aging

and neuropsychological assessment can be combined
to measure the progression of MCI to early AD. Deter-
mination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clin-
icians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of
clinical trials.

Our approach was developed from a perspective that
AD progresses in a continuum and thus, brain changes
also occur on a continuum. Therefore possible transi-
tions may occur from health aging through MCI and
then to AD states. One of the most important issues
in AD severity measurement, which motivates the pro-
posal of an abnormality score, is placing an individual
on this continuum based on objective neurobiologi-
cal measures. In the current study, we have extracted
neuroanatomical measures with FreeSurfer software
from the structural MRI data of the ADNI project. We
used a random half of the healthy participants of the
ADNI dataset as the training data of a ν-OC-SVM clas-
sifier and tested its outcome against the other half of
healthy subjects and the MCI and AD subjects. The
classifier, despite being trained only with healthy sub-
jects, appears to have detected a gradation between
healthy subjects and the severity of the MCI and AD
subjects. The abnormality scores were different among
groups with statistical significance and Tukey’s HSD
post-hoc tests have shown that the difference between
healthy subjects and AD patients was greater than the
difference between healthy subjects and individuals
with MCI (Fig. 2). In addition, more than three quar-
ters of AD subjects had an abnormality score greater
than zero, suggesting that the outlier detection was cor-
rect (Fig. 2). MCI subjects were those in which the
classifier had the lowest accuracy (Table 2), and it is
an expected finding given that the difference between
MCI and controls is smaller than between MCI and
AD subjects (Fig. 2). On top of that, it is also compat-
ible with the fact that the cognitive performance (and
thus, brain integrity) of MCI subjects is in between
healthy subjects and AD patients [45]. Moreover, the
OC-SVM abnormality score was found to be correlated
with CDR (global and sum-of-boxes) and biomarker
measures (tau protein and amyloid-� concentration),
reinforcing the robustness of the proposed method.
From a prognosis perspective, our findings also suggest
that high abnormality scores may be a potential feature
to identify MCI patients more likely to progress to AD.

As expected, the best accuracy found in the ana-
lyzed scenario occurs among AD subjects, for which
OC-SVM labeled 84.3% of them as outliers. This is
smaller than the reported accuracy found using super-

vised machine-learning techniques [46] that reported
values greater than 90%. Furthermore, it is important
to emphasize that although the ν-OC-SVM classifier
was able to find a characteristic pattern for the train-
ing data set (that we chose to be comprised of only
healthy subjects), this classifier is not characterizing
the healthy state. It obtains a representation for what is
typical given this particular training data set. Westman
et al. [47] were able to combine the ADNI dataset with
the European AddNeuroMed (http://www.innomed-
addneuromed.com/) suggesting that the dataset can be
extended to others as long as the MRI captures had
followed the same protocol. In this sense, we used the
ADNI database only as an illustrative dataset for the
proposed method.

Although the findings of this study reinforced the
association between the biomarkers and the brain
abnormalities, the molecular scenario in AD pro-
gression is still an open question. The presence of
amyloid-� deposits forming plaques in AD brain could
not be an initiating event but rather a consequence of
several primary changes such as, impaired microvas-
cular function [48], decline in brain metabolic activity
[49], age-dependent neuroinflamatory process [23],
or increased oxidative stress [50], demonstrating that
the amyloid cascade hypothesis that has guided much
of the AD research for more than 25 years [51, 52]
is still under development. In addition to that, sev-
eral amyloid-independent mechanisms might lead to
AD (for review, see [53]). The main limitation is that
the amyloid-� levels and plaques is not necessarily a
marker of the dementia. Plaques are abundant in cogni-
tively healthy older individuals. Thus, the amyloid-�
peptide is not necessarily the cause or unique factor
in AD etiology. These results support the claim that
amyloid-� should not be considered a harbinger of
cell death but rather a protective response to insult (for
a review, see [54]). Actually, the process that leads
to amyloid-� deposit is correlated with tau pathol-
ogy, which is more directly related to dementia. Tau
pathology correlates better than amyloid-� pathol-
ogy to cognitive impairment in AD human patients
[55]. Furthermore, mutation in the tau gene causing
frontotemporal dementia and Parkinsonism linked to
chromosome 17 [56] suggests that tau dysfunction
without amyloid-� pathology is sufficient to cause neu-
ronal death leading to clinical dementia. On the other
hand, studies in A�PP transgenic mice have shown
that tau is essential to promote amyloid-� toxicity [57]
and also has the ability to rescue premature mortality
[58]. Taken together, these results point out that tau
and amyloid-� play different roles in AD.

http://www.innomed-addneuromed.com/
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Moreover, although we have not found associations
between ApoE genotype and brain abnormality, the
role of ApoE as an integral and pathological part of
amyloid cascade hypothesis should be analyzed with
caution. Figure 2E and F suggests that dementia sever-
ity is not strongly related to the APOE4 genotype, since
all dementia patients go through a similar degenerative
process. However, APOE4 subjects may have an ear-
lier degeneration and represent a higher proportion of
the patients [59]. Controversial findings on the function
of ApoE on amyloid-� levels illustrate the uncertainty
of its role in AD etiology (for review, see [60]). Some
studies have demonstrated that ApoE has no effect on
amyloid-� production [61, 62] and that even APOE4
allele was not associated with CSF biomarkers levels
such as amyloid-�1-42, T-tau and P-tau [63]. Oth-
ers have shown ApoE as an amyloid-� partner [64,
65] with an amyloid-� catalytic function [66]. Fur-
ther, other studies have suggested that ApoE has an
amyloid-� clearance function [67]. The exact role of
ApoE in AD pathology still remains unknown. Despite
its strong genetic association with AD, the ApoE ε4
allele is neither necessary nor sufficient for AD pro-
gression [68]. It has also been suggested that ApoE
receptors, rather than ApoE itself, may be responsible
for the modulation of amyloid-� production [69, 70].
Our proposed brain abnormality index was not found
to be significantly associated to ApoE ε4 allele demon-
strating that the function of ApoE as an AD biomarker
should be carefully evaluated.

As limitations of the present approach, we men-
tion the use of only a Gaussian kernel; not considering
years of education and the use of medication. As AD
prevalence increases with age and it is not the same
between genders [71] here, gender and age effects [72]
were previously removed from the data by consider-
ing the residuals of multiple regression. However, this
assumes linearity and other more sophisticated meth-
ods could also have been applied.

It is important to consider that we are illustrating
the application of neuroimaging and machine learn-
ing on the definition of normative rules. The choice
of the neuroimaging data from the ADNI project or
the classifier as ν-OC-SVM with Gaussian kernel does
not imply that the approach is restricted to this partic-
ular combination. In fact, further studies can explore
other data sets and other set-ups for the classifier. In
addition, we believe that the accuracy can be improved
by including other modalities beyond neuroanatomical
features extracted from MRI since there are encour-
aging results involving multimodal classification
[73].

CONCLUSIONS

One-class support vector machines have been shown
to be a promising tool for the development of normative
databases from neuroimaging data. In the current study,
we demonstrated that this approach could be used to
measure brain abnormality and to suggest possible con-
version from MCI to AD. Complementary, our findings
confirm that subjects with mild cognitive impairment
have brains with structural features in between the two
groups and that the degree of brain abnormality is also
reflected in clinical assessment and biomarkers’ levels.
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